
Managing Large-scale System Deployment

and Configuration with Windows PowerShell

Scott Hanselman, Chief Architect, Corillian Corporation

Software Used

 Windows PowerShell 1.0

 Visual Studio 2003 and 2005

 Windows Server 2003 R2

 SQL Server 2005

 CruiseControl.NET

 MSBUILD and NANT

 NCover for Code Coverage

 NUnit for Unit Testing

 SubVersion and AnkhSVN’s libraries

Introduction

Corillian Corporation is an eFinance vendor that sells software to banks, credit unions and financial

institutions all over the world to run their online banking sites. If you log into a bank in the United

States to check your balances, account history or pay a ball, there’s a 1 in 4 chance you’re talking to a

system built by Corillian, running on Windows, and based on .NET. Our core application is called

Voyager. Voyager is a large managed C++ application that acts as a component container for banking

transactions and fronts a financial institution’s host system, typically a mainframe, provides a number

of horizontal services like scalability, audit-ability, session state management as well as the ability to

scale to tens of thousands of concurrent online users.

We have a dozen or so applications that sit on top of the core Voyager application server, like

Consumer Banking, Corporate Banking, eStatements, and Alerts. These applications are usually Web

applications and many expose Web Services. These applications, along with Voyager are deployed in

large web farms that might have as few as five computers working as a unit, or as many as 30 or more.

While Voyager is now written and compiled as a managed C++ application, all the applications that

orbit Voyager and make up the product suite are written in C#. The core Voyager application server is

ten years old now and like many large Enterprise systems, it requires a great deal of system-level

configuration information to go into production. Additionally, the sheer number of settings and

configuration options are difficult to manage when viewed in the context of a mature software

deployment lifecycle that moves from development to testing to staging to production.

What is Configuration?

Configuration might be looked upon as anything that happens to a Windows system after the base

operating system has been installed. Our system engineers spend a great deal of time installing and

configuring software, but more importantly they spend time managing and auditing the configuration

of systems. What was installed, when was it installed, and are all of these servers running the same

versions of the same software? Maintaining configuration is equally or more important as applying

configuration. Our aim was to make

software deployment easier, much

faster, and make ongoing

maintenance a “no touch” prospect.

Configuration takes on many forms in

large Windows-based systems. Some

examples of system-level

configuration are DOM settings, keys

in the Registry, the IIS Metabase

settings, and .config settings stored in

XML. There are business level

configuration settings stored in the

database, there are multilingual resources stored in XML RESX files, and there are assets like images

and other files that are stored on the web server. Configuration can also take the form of client

specific markup within an ASPX page such as configuration of columns in a grid that could be set at

design time rather than configured at runtime. Configuration can also include endpoint details, like IP

addresses and SSL certificates, or host (mainframe) connectivity information.

Large enterprise applications of any kind, in any industry, written in any technology, are typically non-

trivial to deploy. Voyager also allows for “multi-tenant” configuration that lets us host multiple banks

on a single running instance of the platform, but this multiplies the number of configuration options,

increases complexity and introduces issues of configuration scope.

When hosting a number of financial institutions on a single instance of Voyager we have to keep track

of settings that affect all financial institutions vs. settings scoped to a single FI in order to meet service

level agreements as well as prevent collisions of configuration.

Each instance of Voyager can run an unlimited number of financial institutions, each partitioned into

their own space, but sharing the same hardware. We’ve picked the arbitrary number of fifty FIs and

called one instance a “Pod.” We can run as many pods as we like in our hosting center, with Voyager

itself as the only shared software, so each pod could run a different version of Voyager, which each FI

selects from a menu of applications.

Each runs a different version of their

custom banking platform, like Retail

Banking or Business Banking.

Some classes of configuration items

like IIS settings are configured on a

per-virtual-directory basis and map

one to one to a bank or financial

institution while some settings are

shared amongst all financial

Figure 1 - Voyager in a Production Environment

Figure 2 - Voyager running on a VM or Demo Machine

institutions. Additionally, changes to some configuration settings are recognized immediately by the

system, while other more drastic settings might be recognized only after an AppDomain or application

restart.

Representing Configuration Settings
We’ve chosen to roll up the concept of configuration into a file per financial institution stored in xml

and one more file for the containing instance of the Voyager application server, each with an

associated schema. These files are not meant to be edited directly by a human.

We partitioned settings by scope, by type, by effect (immediate versus scheduled) and by instance of

our Voyager application server – that is, we scope configuration data by Pod and by Bank. One Hosting

Center can have many Pods. One Pod has many Banks, and a Pod might be installed in any number of

Environments like Development, Staging, or Production.

So far these are all logical constructs – not physical. The underlying platform is very flexible and

mapping these services to a physical layout might find the system running fully distributed in a data

center as in Figure 1 or the entire suite of Applications running on a single virtual machine in Figure 2.

This means that a single physical server might fill a different Role like Web Server or Database Server.

The pod configuration file maintains a list of the ID of each computer in the pod and the roles that

computer takes on. For example, the simple pod configuration file below has two environments,

staging and production, and each environment has just one machine, one for staging and one for

production. Each of these machines is in a number of roles, playing web server, database server and

transaction processor in a configuration similar to Figure 2. This format is simple and flexible enough to

keep an inventory of a configuration composed of n number of machines as in Figure 1.

<PodSettings [namespaces removed for clarity]>

 <environments>

 <environment name="staging">

 <servers>

 <server>

 <id>192.168.1.2</id>

 <roles>

 <role>tp</role>

 <role>web</role>

 <role>rm</role>

 <role>sql</role>

 </roles>

 </server>

 </servers>

 </environment>

 <environment name="production">

 <servers>

 <server>

 <id>192.168.1.1</id>

 <roles>

 <role>tp</role>

 <role>web</role>

 <role>rm</role>

 <role>sql</role>

 </roles>

 </server>

 </servers>

 </environment>

 </environments>

 ...Other Pod Settings here...

</PodSettings>

Figure 3 - A simple Pod Settings XML file

Each pod has only one PodSettings.xml file as these settings are global to the pod in scope. Each

financial institution has a much more complex settings.xml file that contains all settings across all

applications they’ve purchased that they might want to manage. We’ve found the natural hierarchy of

XML along with namespaces and its inherent extensibility as a meta-language to be much easier to deal

with versus a database. Storing all the settings in a file on a per-FI basis also has a very specific benefit

to our vertical market as well as making that file – the authoritative source for their settings – easier to

version.

Our Solution

The solution needed to address not only the deployment of software, but the configuration of

software, specifically the ongoing reconfiguration that occurs through the life of a solution. Taking a

machine from a fresh OS install to a final deployment was an important step, but we also needed to

manage the state of the system in production. In our case, banks want to make changes not only to

text, and look and feel, but also business rules within specific applications. These changes need to be

audited, some applied immediately and some applied on a schedule. Each needs to be attached to an

individual who is accountable for the change.

These requirements pointed us in the direction of a version control system, specifically Subversion.

Subversion manages all changes to the file system, that is, anything from code in the form of

assemblies, to markup. All configuration, as defined above, is stored in a financial institution-specific

XML file and is versioned along with every other file in the solution. It’s significant to point out that we

are versioning the actual deployed solution, not the source code. The source code is in a different

source code repository, and managed in the traditional fashion; this Subversion system manages the

application in its deployed, production state.

There are many servers in a deployed production system – upwards of dozens – and they will each run

a custom Agent Service that hosts PowerShell Runspaces enabling the complete remote administration

of the system using a single open TCP port. Rather than pushing software for deployment to these

many remote systems, imperative commands are sent to these remote agents and the remote systems

pull their assigned deployments from a version within Subversion. After deployment – the laying down

of bits on the disk – a publish occurs, and PowerShell scripts spin through the settings XML file for the

particular financial institution and each class of setting, for the registry, database, config file, etc., is

applied to the solution.

When a FI wants to make a change to their system, they log into a secure SharePoint extranet and edit

the configuration of their solution in a user interface that was code-generated using their own settings

XML file as the source. Their changes are applied not to the production system, but rather to the

settings XML file stored in subversion. Settings can be applied immediately or on a schedule,

depending on the ramifications of a particular settings change. Settings that require a restart of IIS or

another service will happen on a scheduled basis, while look and feel changes can happen

immediately. Changes are sent to Subversion and versioned along with the identity of the requesting

user for audit and potential rollback purposes. These changes can be double checked by a Customer

Service Representative if need be. Assuming the changes are valid, they are then pulled down by the

remote agents and published to the deployed solution. Rollbacks or “reassertion” of settings is

performed in the identical fashion using an earlier version of the deployed solution and settings.

PowerShell scripts handle both the deployment of software and publishing of settings. PowerShell

commands are used not only at the command-line, but also hosted within ASP.NET applications and

MMC/WinForms applications, and remotely via a custom host. PowerShell interacts with Subversion,

and nearly every possible kind of object on the system that requires configuration.

Storing Applications and Configuration

Voyager is just the base of the pyramid of a much larger suite of applications that a bank might choose.

Each web application might have configuration data stored separately or shared with other

applications. Here is a list of different potential bits of configuration that could be “set”:

 Application Settings

o Assemblies, code and files on disk

o System DLLs, prerequisites

o GAC’ed Assemblies

o DCOM/COM+ settings and permissions

o Registry Settings

o File System ACLs (Access Control Lists) and Permissions

o XML configuration files

o Settings stored in a Database

o Mainframe/Host Connectivity Details

 Web Applications

o Web Server (IIS Metabase) Settings

o Web Markup (ASPX)

o Stylesheets (CSS)

o Multilingual Resources (RESX)

o Asset management (Graphics, Logos, Legal Text, etc)

Everything in this list, and more, is applied on every single machine in an application farm once the

operating system has been installed. We’ll talk more about how Applications are deployed, then how

configuration is published to those applications after deployment.

Storing Applications in their Deployed

State
Before configuration settings can be applied the actual

applications must be installed. Previously most of our

applications were installed using MSI installer

technology, but as the suite of applications grew, so did

the number of installers. As you know, MSI installers

can be finicky, particularly with regards to installation

order. Patching is also problematic and often it’s

difficult to confirm that a farm of machines is all

configured identically with the exact same version of an

application. It’s difficult to version an entire application

farm.

We use Subversion as our source control system of

choice, and appreciate its efficient use of disk space.

We decided to use subversion to also store the binaries

of deployed applications. Essentially, we “checked in

our running application.” This allows us to effectively

version entire web farms running the suite. The

snapshot of a repository is seen below in Figure 4.

The hierarchy presented by Subversion enables us to

model the logical and aspects of the business and the physical aspects of the file system. The

Templates folder contains a basic template for a new “model” Financial Institution. In Figure 5, named

Pods contain FIs that contain environments. Beneath the environment are those folders that contain

applications specific to a particular FI.

Shared applications like Voyager itself and System Files are versioned

separately outside the Pod. Some FIs choose to customize their

installations, and those customizations are always stored within that FI’s

pod.

In Search of a Versioned FileSystem - Subversion on

top of NTFS
In this deployment model, we are using Subversion as a “versioned

FileSystem” rather than as a source control system. This is largely a

semantic distinction, but it has been a valuable one. The application

deployment repository is kept separate from the source control

repository and thought of differently. Figure 5 - A Sample Pod and Credit
Union showing multiple deployment
Environments

Figure 4 - A Subversion Repository showing a partial
Suite of Applications in a Pod

We choose to use Subversion to manage our binaries rather than Windows 2003 Volume Shadow

Copies service because of Subversion’s transparency, as it’s just a file system built on top of a file

system. Also we valued its programmability and the transactional nature of Subversion’s check-ins. We

could have used SQL Server as a backing store, but Subversion required no licensing fees, was

sufficiently transactional, and it already simply represented as a file system.

Tying it all together with Windows PowerShell

Once the basic design for storing configuration was drafted, we found ourselves dreading writing all of

this in C#. We felt the solution called for a scripting language that would allows us to “put the whole of

Windows on a string.” Since we’d be integrating.NET objects, legacy COM objects, manipulating the

registry, and talking to databases, PowerShell seemed much more flexible than VBScript.

Connecting PowerShell and Subversion
First we needed to integrate PowerShell and Subversion. While PowerShell supports the concept of a

pluggable Drive Provider and there is the beginning of a Subversion Drive Provider for PowerShell1, we

decided to utilize a more explicit CRUD – Create, Read, Update, Delete –model for accessing files in

Subversion.

One could use the TortoiseProc.exe application that is used by the TortoiseSVN tool that integrates

subversion with Explorer with a script as seen below. It is an example of a decent pattern for calling

tools that have discoverable paths (via the registry, etc) but aren't in the PATH proper.

if ($args.Length -lt 1) {

 write-host "usage: tsvn <command>"

 return

}

if ((test-path "HKLM:\Software\TortoiseSVN") -eq $false) {

 write-host -foregroundColor Red "Error: Could not find TortoiseProc.exe"

 return

}

$tortoiseKey = get-itemproperty "HKLM:\Software\TortoiseSVN"

if ($tortoiseKey -eq $null) {

 write-host -foregroundColor Red "Error: Could not find TortoiseProc.exe"

 return

}

$tortoise = $tortoiseKey.ProcPath

if ($tortoise -eq $null) {

 write-host -foregroundColor Red "Error: Could not find TortoiseProc.exe"

 return

}

1 http://www.hanselman.com/blog/AnkhSVNAndAMonadSVNProvider.aspx

http://www.hanselman.com/blog/AnkhSVNAndAMonadSVNProvider.aspx

$commandLine = '/command:' + $args[0] + ' /notempfile /path:"' + ((get-

location).Path) + '"'

& $tortoise $commandLine

However, TortoiseProc is a standard command-line application and doesn’t tightly integrate with

PowerShell, leaving us to parse strings. Also, TortoiseProc is really meant to be used from TortoiseSVN

and has poor username/password handling.

The most attractive option was to find a way to talk to Subversion directly using something in-process.

We wanted a solution that integrated cleanly with PowerShell so that we could maximize reuse by

caling our PowerShell scripts from not only the command line, but also from ASP.NET and a WinForms

application. Arild Fines2, the author of a popular Subversion Source Control Provider for Visual

Studio.NET, provides a .NET library called NSvn.Core that fronts the “C” style API that is included with

Subversion. It doesn't appear to be distributed outside of Ankh, but it is distributed with the Ahkn

install. The library has no documentation but it clearly shadows the Subversion API with some

allowances and abstractions to make it easier to access from within .NET.

Here’s an example script to get a file from Subversion to a local path.

param ([string]$svnurl = $(read-host "Please specify the path to

SVN"),

 [string]$svnlocalpath = $(read-host "Please specify the local path")

)

if ([System.IO.Path]::IsPathRooted($svnlocalpath) -eq $false)

{

 throw "Please specific a local absolute path"

}

[System.Reflection.Assembly]::LoadFrom((join-Path $GLOBAL:someGlobalPath -

childPath NSvn.Common.dll))

[System.Reflection.Assembly]::LoadFrom((join-Path $GLOBAL:someGlobalPath -

childPath NSvn.Core.dll))

$PRIVATE:svnclient = new-object NSvn.Core.Client

$PRIVATE:svnclient.AuthBaton.Add(

[NSvn.Core.AuthenticationProvider]::GetWindowsSimpleProvider())

if ((test-Path $svnlocalpath) -eq $true)

{

 write-progress -status "Updating from $svnurl" -activity "Updating Working

Copy"

 $PRIVATE:svnclient.Update($svnlocalpath, [NSvn.Core.Revision]::Head,

$true)

}

else

{

 write-progress -status "Checkout from $svnurl" -activity "Updating Working

Copy"

2 http://arildf.spaces.live.com/

http://arildf.spaces.live.com/

 $PRIVATE:svnclient.Checkout($svnurl, $svnlocalpath,

[NSvn.Core.Revision]::Head, $true)

}

This script lets us checkout and update from Subversion, but there’s no progress bar during the

operation. The underlying NSvn .NET library will call a delegate to report its progress as an event, so

the addition of these two lines after the creating of the NSvn.Core.Client object enables the script with

a Progress bar. Notice that a script block is used as an anonymous method that is hooked into the

Notification event of the NSvn Client object.

$PRIVATE:notificationcallback = [NSvn.Core.NotificationDelegate]{

 Write-Progress -status ("{0}: {1}" -f ($_.Action, $_.Path)) -

activity "Updating Working Copy"

 }

$PRIVATE:svnclient.add_Notification($notificationcallback

With these building blocks, we can easily talk to Subversion with PowerShell scripts, then reuse those

scripts in different context within the overall solution, including ASP.NET, WinForms, or within

UnitTests.

Testing PowerShell with NUnit
We practice Continuous Integration at Corillian, running a Build Server for every project. Every time

source is checked in, our Build Server – running an open source package called CruiseControl – checks

the source repository for changes, waits 5 minutes to ensure there aren’t more changes pending, then

kicks off a full build of the application. All our Unit Tests run after every build using a Test framework

like NUnit or MbUnit. We wanted to add testing of PowerShell scripts to our existing Continuous

Integration framework. Even though PowerShell is a dynamic scripting environment, that doesn’t

except it from proper unit testing or first-class inclusion in our build.

This example scripts shows how to create an instance of the PowerShell “Runspace” environment in-

process within an existing Unit Testing Framework like NUnit. This example tests a script called “new-

securestring.ps1” that returns a .NET Framework 2.0 SecureString type. The object is returned from the

PowerShell script and passed back for testing. Then the SecureString is added to the PowerShell

environment as a named variable that is accessible from another PowerShell script, completing the

circle.

using System;

using System.Collections;

using System.Collections.ObjectModel;

using System.Management.Automation.Runspaces;

using System.Management.Automation;

using NUnit.Framework;

using System.Security;
namespace PSUnitTestLibrary.Test

{

 [TestFixture]

 public class Program

 {

 private Runspace myRunSpace;

 [TestFixtureSetUp]

 public void PSSetup()

 {

 myRunSpace = RunspaceFactory.CreateRunspace();

 myRunSpace.Open();

 Pipeline cmd = myRunSpace.CreatePipeline(@"set-Location

'C:\dev\someproject");

 cmd.Invoke();

 }

 [Test]

 public void PSTest()

 {

 Pipeline cmd = myRunSpace.CreatePipeline("get-location");

 Collection<PSObject> resultObject = cmd.Invoke();

 string currDir = resultObject[0].ToString();

 Assert.IsTrue(currDir == @"'C:\dev\someproject");

 cmd = myRunSpace.CreatePipeline(@".\new-securestring.ps1

password");

 resultObject = cmd.Invoke();

 SecureString ss =

(SecureString)resultObject[0].ImmediateBaseObject;

 Assert.IsTrue(ss.Length == 8);

 myRunSpace.SessionStateProxy.SetVariable("ss", ss);

 cmd = myRunSpace.CreatePipeline(@".\getfrom-securestring.ps1

$ss");

 resultObject = cmd.Invoke();

 string clearText = (string)resultObject[0].ImmediateBaseObject;

 Assert.IsTrue(clearText == "password");

 }

 }

}

In this case we're assuming one PowerShell RunSpace per TestFixture as we are using the

TestFixtureSetUp method to get that RunSpace going, but one could certainly move things around if

you wanted different behavior or isolation. The PowerShell RunspaceFactory allows for as many

RunSpaces as are required, so tests can scope them as appropriate.

Including PowerShell into our existing Unit Testing Framework ensured that the dynamic and flexible

no-compile model of PowerShell didn’t encourage sloppiness. In this model, every line of PowerShell

code is subject to the same scrutiny as compiled C# code.

Deploying Software
We’ve semantically and physically separated the concept of deployment from publishing. We store our

applications in their deployed or “pre-installed” state in Subversion so that they can be retrieved on a

fresh machine and run immediately. However, there are some post-deployment steps like registry

settings, COM object registration and ACL permission that need to be setup after a deployment.

The commands to deploy a complete Consumer (Retail) Banking System on a Virtual Machine from

scratch on a fresh operating system with PowerShell follow:

PS:> setup-voyager.ps1 –role “ALL”

PS:> add-fi.ps1 –fiName “SampleBank”

PS:> deploy-fi.ps1 –fiName “SampleBank”

PS:> test.ps1 –fiName “SampleBank”

The first line runs a script that brings Voyager down from the Subversion repository and uses

PowerShell to register performance counters, register COM objects, edit XML configuration files, etc.

The outer shell for that script looks like this:

Executes the setup steps common across all server roles

function

InstallCommon([string]$Path,[string]$voyUser,[string]$voyPwd,[string]$SQLSer

verName,[string]$RepoPath,[bool]$ccexec)

{

 write-verbose "RepoPath: $RepoPath"

 Checkout -RepoPath $RepoPath -Path $Path

 LoadAssemblies

 CopySystemFiles -Path $Path

 AddRegistryKeys -Path $Path

 SetUpSecretStore -Path $Path -fileList $ssfiles

 SetupSDK -Path $Path -fileList $sdkfiles

 InstallPerfCounters -Path $Path

 SetupDCOM -voyUser $voyUser -voyPwd $voyPwd

 AddUserToDCOMUsersGroup -voyUser $voyUser

 SetWMIPermissions -voyUser $voyUser

 SetTempPermissions -voyUser $voyUser

 SetupGAC -Path $Path

}

We found a comfortable balance between C# and PowerShell during this project. PowerShell scripts

became the interstitial bits, the string, that holds the major reusable components together. When

something was easier to accomplish in PowerShell, we wrote scripts. When it was clear that a more

strongly typed language was

required, we wrote Assemblies or

cmdlets. It’s very easy to move back

and forth between the two

environments.

Even though PowerShell is its own

language, we found that engineers

and QA that had a background in C#

had no trouble picking it up. Some of

the syntax is a little obscure, but

good design patterns still apply and

our engineers were able to apply

common patterns of reuse to their

work in PowerShell.

Admin console
SVN application

repository

Voyager and Voyager

subystem databases

Hosting Engineer

add-fi AquaBank

Copy /FI/model to /FI/AquaBank

Get working copy for /FI/AquaBank/web

Update filesystem components

Commit

Get working copy for /Corillian/Voyager/HostIntegration

http://foo/svn

VoyagerClient.config, etc.

Update filesystem components

HostIntegration.config, etc.

Relax, get some coffee, etc.

Commit

<add FI entries to Voyager, Auth, RM, and Evergreen databases>

add-fi: Adding an FI to the system

Figure 6 - Sequence Diagram showing how an FI is added to the system

Other scripts install the Web Server, SQL Server and other support servers. The next script, Add-FI

registers the new Financial Institution with the Voyager system and brings the Web Application down

from Subversion and applies the default settings. The last line, test.ps1, runs an extensive series of Unit

and Integration Tests to confirm the successful deployment.

The pod includes a “MODEL” for each application that might need to be installed. A Financial

Institution who signs up with Corillian will select the applications they want from our suite of apps.

Each application has a default state that includes the minimum settings it requires to be usable. This

allows our sales and demo staff to literally type in these four commands – that could easily be one

command – to bring up a sample site that talks to a mainframe simulator.

As there are a number of different kinds of applications that might be deployed, we abstracted the

work into Deploy Handlers that know how to handle their respective application type. Each is written

in C# and implements a Deploy method and is called by PowerShell when it comes time to deploy the

application. In essence, Deploy Handlers know how to “lay the bits down on disk” and little else.

Publishing Configuration Settings
Once a Financial Institution is deployed – meaning the files are laid down in a default state on the disk

and a minimal configuration is prepared - the next step is publishing their settings. The publish step

occurs every time a bank makes a change to their settings from their web-based configuration console.

Figure 7 - Slide showing settings moving from Subversion to a Staging

System

Self -Service Conf igurat ion
Updat ing t he staging environment

Subversion

Application

RepositoryBanker

Bob

TP2

TP1Web1

Web2

Voyager

SQL

staging

Self-service

(RM)

FI-settings.xml
Submit change

Scheduled

task / admin

console

FI-settings.xml

Updated system

images

Update now!

System images

Data

In a pattern similar to deployment, each class of application has an associated PublishHandler. The

publish handler is responsible for taking the FI-specific settings from a “settings bag” and applying

those settings to the class of object the handler is responsible for. For example, some PublishHandlers

are DatabasePublishHandler, UIResourcePublishHandler, UIStylePublishHandler, and

WebSettingsPublishHandler.

As a more specific example, we allow the client to change the fonts and colors of their site, so the

UIStylePublishHandler takes the name/value pair configuration details like “HeaderFont” = “Ariel” as

well as dozens of others, and then writes out a custom CSS file dynamically. The same pattern applies

to changing text on the site, image assets – anything we choose to make changeable to the client.

The Missing Link - PowerShell Remoting
PowerShell doesn’t include a technique to issue commands to remote systems in version 1.0, so we

had to build our own for now. This is a very desirable feature and I expect to see something similar

included in a future version of PowerShell.

The basic requirement is to issue PowerShell commands to many different machines in a distributed

fashion. After some pair programming with Corillian Architect Brian Windheim, we created a Windows

Service that would take a string of PowerShell commands and return a string that was the console

output of those commands. We could then issue remote commands, but the CLR type passed to and

from at the server was just strings. We were using PowerShell but we’re just made the equivalent of

SysInternal’s PSEXEC3 utilty, only for PowerShell. We preferred something more integrated with the

PowerShell pipeline. Specifically we wanted type fidelity of return values.

Ideally we’d like to have behavior like this, but again, PowerShell 1.0 doesn’t include this:

using (Runspace myRunSpace = RunspaceFactory.CreateRunspace("COMPUTERNAME"))

{

 myRunSpace.Open();

}

We then realized that we could use the built-in PowerShell cmd-let called Export-CliXml4. It is the

public cmdlet that serializes CLR and PowerShell objects to a custom XML format. It’s important to note

that it isn't the XmlSerializer. It's a serialized graph of objects with a rich enough description of those

objects that the client doesn't necessarily need the CLR types. If reflection had a serialization format, it

might look like this CLI-XML format.

We created a RunspaceInvoker class that would be hosted in a Windows Service or IIS on each remote

machine, but it could be in any Remoting hosting process. We host in IIS using .NET 2.0 in order to use

the built in Windows Integrated Security over remoting. The app.config for my service looks like this:

<?xml version="1.0" encoding="utf-8" ?>

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 <system.runtime.remoting>

 <customErrors mode="Off"/>

 <application>

 <channels>

 <channel ref="http" port="8081"/>

 </channels>

3 http://www.sysinternals.com/Utilities/PsExec.html
4 https://www.microsoft.com/technet/scriptcenter/topics/msh/cmdlets/export-clixml.mspx

http://www.sysinternals.com/Utilities/PsExec.html
https://www.microsoft.com/technet/scriptcenter/topics/msh/cmdlets/export-clixml.mspx

 <service>

 <wellknown mode="SingleCall"

 type="Example.RemoteRunspace.RunspaceInvoker,

 Example.RemoteRunspace" objectUri="remoterunspace.rem"/>

 </service>

 </application>

 </system.runtime.remoting>

</configuration>

Note the objectUri and port, they are used for the endpoint address. There's an installer class that is

run using installutil.exe on each destination machine. You can either set the identity of a Windows

Service and starts it up with net start RemoteRunspaceService, or you can host within IIS

and manage process identity the standard way.

This is the RunspaceInvoker, it’s very simple. The error handling has been removed for clarity.

 public class RunspaceInvoker : MarshalByRefObject

 {

 public RunspaceInvoker(){}

 public string InvokeScriptBlock(string scriptString)

 {

 using (Runspace myRunSpace = RunspaceFactory.CreateRunspace())

 {

 myRunSpace.Open();

 string tempFileName = System.IO.Path.GetTempFileName();

 string newCommand = scriptString +

 " | export-clixml " + "\"" + tempFileName + "\"";

 Pipeline cmd = myRunSpace.CreatePipeline(newCommand);

 Collection<PSObject> objectRetVal = cmd.Invoke();

 myRunSpace.Close();

 string retVal = System.IO.File.ReadAllText(tempFileName);

 System.IO.File.Delete(tempFileName);

 return retVal;

 }

 }

 }

A command for the remote service comes into the scriptString parameter. For example we might pass

in dir c:\temp as the string, or a whole long pipeline. We create a Runspace, open it and append

"| export-clixml" and put the results in a tempFileName.

It's unfortunate we can't put the pipeline results in a variable or get it out of the Pipeline, but I think I
understand why they force me to write the CLI-XML to a file. They are smuggling the information out of
the system. It's the Heisenberg Uncertainly Principle of PowerShell. If you observe something, you
change it. Writing the results to a file is a trapdoor that doesn't affect the output of the pipeline. Again,
this will likely be a moot point in future versions. We’ve tried to abstract things away so that when a
future is added in a later version, we’ll only need to remove our custom code.

http://en.wikipedia.org/wiki/Uncertainty_principle

This remoting doesn't need to be highly performant as it’s only happening during configuration or

deployment. The pipeline results are written to a temp file, we read the file in then delete it

immediately. The serialized CLI-XML is returned to the caller.

The client portion includes two parts, a RunspaceProxy, and a Type Extension. We start with the

RunspaceProxy. This is the class that the client uses to invoke the command remotely.

public class RunspaceProxy

{

 public RunspaceProxy()

 {

 HttpChannel chan = new HttpChannel();

 if (ChannelServices.GetChannel("http") != null)

 {

 ChannelServices.RegisterChannel(chan, false);

 }

 }

 public Collection<PSObject> Execute(string command, string remoteurl)

 {

 RunspaceInvoker proxy = (RunspaceInvoker)Activator.GetObject(

 typeof(RunspaceInvoker), remoteurl);

 string stringRetVal = proxy.InvokeScriptBlock(command);

 using (Runspace myRunSpace = RunspaceFactory.CreateRunspace())

 {

 myRunSpace.Open();

 string tempFileName = System.IO.Path.GetTempFileName();

 System.IO.File.WriteAllText(tempFileName, stringRetVal);

 Pipeline cmd = myRunSpace.CreatePipeline(

 "import-clixml " + "\"" + tempFileName + "\"");

 Collection<PSObject> retVal = cmd.Invoke();

 System.IO.File.Delete(tempFileName);

 return retVal;

 }

 }

}

We use the HTTP channel for debugging and ease of use with tools like TcpTrace5. The command to be

executed comes in along with the remoteUrl. We instantiate a RunspaceInvoker on the remote

machine and it does the work via a call to InvokeScriptBlock in a hosted Runspace. The exported CLI-

XML comes back over the wire and now I have to make a tempfile on the client. Then, in order to

'deserialize' - a better word would might be re-hydrate - the Collection of PSObjects, make a local

Runspace and call import-clixml and poof, a Collection<PSObject> is returned to the client. Then the

file is deleted.

Why is returning real PSObjects so important when the first version worked fine returning strings?

Because when a script or cmdlet returns a PSObject we can use the select, sort, and where

cmdlets against these PSObjects as if they were locally created – because they are local. They are real

5 http://www.pocketsoap.com/

http://www.pocketsoap.com/

and substantial. This will allow us to write scripts that blur the line between the local admin and

remote admin.

Now, all of these samples have been C# so far, when does PowerShell come in? Also, since we've

worked so hard to get the return values integrated cleanly with PowerShell, what's a good way to get

the remote calling of scripts integrated cleanly?

Our first try was to simple make a global function called RemoteInvoke() that took a command

string and returned an object. It worked, but didn’t feel well-integrated. While reading then PowerShell

blog, we remembered how Jeffrey Snover said to look to Type Extensions when adding

functionality6 rather than functions and cmdlets.

A global function is just an expression of programmer intent that is floating around in the global

environment. We wanted to actually take a piece a functionality that already worked well, the

ScriptBlock, and extend it. In traditional object-oriented systems extension is done via derivation, but

in PowerShell (as well as languages like Ruby) we have type extension as an available option. That

means we can literally add functionality, in this case a new method called RemoteInvoke, to an existing

type. Type extension allows for a tighter integration with PowerShell, doesn’t change the usage model

dramatically, and makes the new functionality not only easier to learn, but also more discoverable.

We made a My.Types.ps1xml file in the PSConfiguration directory with our function enhancing the

ScriptBlock type within PowerShell:

<Types>

 <Type>

 <Name>System.Management.Automation.ScriptBlock</Name>

 <Members>

 <ScriptMethod>

 <Name>RemoteInvoke</Name>

 <Script>

 if ($args[0])

 {

 $PRIVATE:remoteUrl = $args[0]

 }

 else

 {

 $PRIVATE:remoteUrl = $GLOBAL:remoteUrl

 }

 if ($PRIVATE:remoteUrl -eq $null) { throw 'Please supply a

remoteUrl either by global variable or argument!' }

 if ($GLOBAL:evergreenlibPath -eq $null) { throw 'The

Evergreen Environment is not setup!' }

[System.reflection.assembly]::LoadWithPartialName("System.Runtime.Remoting")

|

 out-null

 $someDll = "C:\foo\Hanselman.RemoteRunspace.dll"

 $asm = [System.Reflection.Assembly]::LoadFrom($someDll) | out-null

6 http://blogs.msdn.com/powershell/archive/2006/06/24/644987.aspx

http://blogs.msdn.com/powershell/archive/2006/06/24/644987.aspx

 $runspace = new-object Hanselman.RemoteRunspace.RunspaceProxy

 $runspace.Execute([string]$this, $GLOBAL:remoteUrl);

 </Script>

 </ScriptMethod>

 </Members>

 </Type>

</Types>

A call to Update-TypeData My.Types.ps1xml happens within the profile so it happens

automatically. This file adds a new method to the built-in ScriptBlock type. A ScriptBlock is literally a

block of script within curly braces. It's a very natural "atom" for us to use in PowerShell.

The RemoteUrl is an optional parameter to the RemoteInvoke ScriptMethod, and if it’s not passed in,

we’ll fall back to a global variable. The RemoteInvoke loads the .NET System.Runtime.Remoting

assembly, and then it loads our Proxy assembly. Then it calls Execute, casting the [ScriptBlock] to a

[string] because the Runspace takes a string.

For example, at a PowerShell prompt if we do this:

PS[79] C:\> $remoteUrl="http://remotecomputer:8081/RemoteRunspace.rem"

PS[80] C:\PS[80] C:\> 2+2

4

PS[81] C:\> (2+2).GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

PS[82] C:\> {2+2}.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False ScriptBlock System.Object

PS[83] C:\> {2+2}

4

PS[84] C:\> {2+2}.RemoteInvoke()

4

PS[85] C:\> {2+2}.RemoteInvoke().GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

Note the result of the last line. The value that comes out of RemoteInvoke is an Int32, not a string. The

result of that ScriptBlock executing is a PowerShell type that we can work with elsewhere in a local

script.

Here's the CLI-XML that went over the wire (just to make it clear it's not XmlSerializer XML):

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">

 <I32>4</I32>

</Objs>

The call to 2+2 is a simple example, but this technique works with even large and complex object

graphs like the FileInfos and FileSystemInfo objects that are returned from dir (get-childitem) as seen in

the Figure below.

Figure 8 - A call to Get-Process that executed on a Remote Machine continued along the pipeline

In this screenshot we do a get-process on the remote machine then sort and filter the results using

standard cmdlets just as we would/could if the call were local.

Distributed Deployment - Background Job Processing with PowerShell
Now that we can issue commands remotely, the next step is issuing those commands asynchronously.

Jim Truher7 used the PowerShell RunSpace architecture to create the next important element of our

system – background processing. When managing large web farms, the more servers, the more

important asynchrony becomes. Early versions of our system were tested in a one or two server

configuration with an algorithm like this psuedocode:

for each Server in Pod.Servers

 for each Role in Server.Roles

 Remote Deploy Role-specific code to Server

 next

next

However, when the system was used in larger farms it becomes painfully obvious that the Servers are

getting their code deployed one at a time, in order.

Windows PowerShell doesn’t natively support the concept of background jobs, but the ability to fire up

a new RunSpace makes the implementation of Un*x style jobs processing a fairly trivial task.

The experience at the command line looks like this:

7 http://jtruher.spaces.live.com/blog/cns!7143DA6E51A2628D!130.entry

http://jtruher.spaces.live.com/blog/cns!7143DA6E51A2628D!130.entry

PS> new-job { get-date; start-sleep 5; get-date }

Job 0 Started

PS>

Job 0 Completed

PS> jobs 0

JobId Status Command Results

----- ------ ------- -------

5 Completed get-date; start-sleep 5; ... 11/30/2006 8:27:32 PM

PS> (jobs 0).results

Thursday, November 30, 2006 8:27:32 PM

Thursday, August 30, 2006 8:27:37 PM

This allows us to change the original deployment psuedocode to:

for each Server in Pod.Servers

 for each Role in Server.Roles

 new-job Remote Deploy Role-specific code to Server

 next

next

wait while all jobs are still running

This simple change makes a huge difference in the performance of a deployment through

parallelization, but doesn’t require changes to any of the underlying code. ScriptBlocks can now be

executed as local background jobs with execution occurring on remote machines. Figure 9 shows a

sequence diagram with the steps required to deploy a Bank, in this example “Aquabank”, to a farm of

servers, where #N is the number of servers in the farm.

Admin console

Hosting Engineer

SVN application

repository

RemoteRunspace

TP #N

RemoteRunspace

Web #N

RemoteRunspace

RM #N

distributed-deploy-fi AquaBank

<foreach TP> deploy-fi AquaBank TP

svn update “c:\program files\corillian”

<foreach web> deploy-fi AquaBank WEB

svn update “c:\sites\AquaBank”

<foreach RM> deploy-fi AquaBank RM

svn update “c:\sites\AquaBank”

deploy-fi: updating the distributed file system http://foo/svn

Figure 9 - Sequence Diagram showing the Distributed Deployment of an Application

Securing PowerShell Scripts
The RemoteRunspace will be installed on production machines, but will be locked down in a number of

ways. First, the RemoteRunspace will listen only on an “administrative backplane,” that is, a network

that is not the public internet. Second, it will use SSPI or Windows Authentication over .NET 2.0

Remoting for Authentication. Thirdly, we will explicitly disallow running of any arbitrary PowerShel

scripts by changing the execution policy of PowerShell to “AllSigned” and force certificate signing of all

scripts.

PowerShell supports a concept called "execution policies" in order to help deliver a more secure

command line administration experience. Execution policies define the restrictions under which

PowerShell loads files for execution and configuration. The four execution policies are Restricted,

AllSigned, RemoteSigned, and Unrestricted.

PowerShell is configured to run in its most secure mode by default. It installed in this mode with a

"Restricted" execution policy, where PowerShell operates as an interactive shell only.

The modes are:

 Restricted (default execution policy, does not run scripts, interactive only)

 AllSigned (runs scripts; all scripts and configuration files must be signed by a publisher that you

trust; opens you to the risk of running signed (but malicious) scripts, after confirming that you

trust the publisher);

 RemoteSigned (runs scripts; all scripts and configuration files downloaded from

communication applications such as Microsoft Outlook, Internet Explorer, Outlook Express and

Windows Messenger must be signed by a publisher that you trust; opens you to the risk of

running malicious scripts not downloaded from these applications, without prompting)

 Unrestricted (runs scripts; all scripts and configuration files downloaded from communication

applications such as Microsoft Outlook, Internet Explorer, Outlook Express and Windows

Messenger run after confirming that you understand the file originated from the Internet; no

digital signature is required; opens you to the risk of running unsigned, malicious scripts

downloaded from these applications).

Restricted Execution Policy

If you're reading this for the first time, PowerShell may have just displayed the error message as you

tried to run a script:

The file C:\my_script.ps1 cannot be loaded. The execution of scripts is

disabled on this system. Please see "Get-Help about_signing" for more

details.

By default, PowerShell does not run scripts, and loads only configuration files signed by a publisher

that you trust. Run the following from a PowerShell prompt (AllSigned is an example):

Set-ExecutionPolicy AllSigned

This command requires administrator privileges. Changes to the execution policy are recognized

immediately.The AllSigned execution policy is best for production since it forces the requirement for

digital signatures on all scripts and configuration files.

Script Signing Background

Adding a digital signature to a script requires that it be signed with a code signing certificate. Two

types are suitable: those created by a certificate authority (such as Verisign etc.), and those created by

a user (called a self-signed certificate).

If your scripts are specific to your internal use, you maybe able to self-sign. You can also buy a code

signing certificate from another certificate authority if you like.

For a self-signed certificate, a designated computer is the authority that creates the certificate. The

benefits of self-signing include its zero cost as well as creation speed and convenience. The drawback

is that the certificate must be installed on every computer that will be running the scripts, since other

computers will not trust the computer used to create the certificate.

To create a self-signed certificate, the makecert.exe program is required from the Microsoft .NET

Framework SDK or Microsoft Windows Platform SDK. It’s found in the "C:\Program Files\Microsoft

Visual Studio 8\SDK\v2.0\Bin\" directory.

Set up to view the Certificates by running mmc.exe and adding the Certificates snap-in, or by running

certmgr.msc from Start|Run.

Setting Up a Self-Signed Certificate

Run the following from a Command Prompt. It creates a local certificate authority for your computer:

makecert -n "CN=PowerShell Local Certificate Root" -a sha1 -eku

1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer -ss Root -sr localMachine

You will be prompted for the private key twice, this will create the trusted root certificate authority:

Figure 10 - A new trusted root certificate authority

 Now run the following from a Command Prompt. It generates a personal certificate from the above

certificate authority:

makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 -eku 1.3.6.1.5.5.7.3.3 -

iv root.pvk -ic root.cer

You’ll be prompted for the private key, there will now be a certificate in the Personal store:

Figure 11 - A new certificate in the Personal Store

After the above steps, verify from within Powershell that the certificate was generated correctly:

PS C:\ > Get-ChildItem cert:\CurrentUser\My -codesign

Figure 12 - Accessing the certificate store from PowerShell

You can now delete the two temporary files root.pvk and root.cer in your working directory. The

certificate info is stored with that of others, in "C:\Documents and Settings\[username]\Application

Data\Microsoft\SystemCertificates\My\".

Signing a Script

To test the effectiveness of digitally signing a Powershell script, try it with a script “foo.ps1”:

PS C:\> Set-ExecutionPolicy AllSigned
PS C:\> .\foo.ps1
The file C:\foo.ps1 cannot be loaded. The file C:\foo.ps1 is not digitally

signed. The script will not execute on the system. Please see "get-help

about_signing" for more details..
At line:1 char:9

+ .\foo.ps1 <<<<

Now sign the script:

PS C:\> Set-AuthenticodeSignature c:\foo.ps1 @(Get-ChildItem

cert:\CurrentUser\My -codesigning)[0]
Directory: C:\
SignerCertificate Status Path

----------------- ------ ----

A180F4B81AA81143AD2969114D26A2CC2D2AD65B Valid foo.ps1

This modifies the end of the script with a signature block comment at its end. For example, if the script

consisted of the following commands:

param ([string] $You = $(read-host "Enter your first name"))

write-host "$This was signed."

After the script is signed, it looks like this:

param ([string] $You = $(read-host "Enter your first name"))

write-host "$ This was signed."

SIG # Begin signature block

MIIEMwYJKoZIhvcNAQcCoIIEJDCCBCACAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB

gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR

AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU6vQAn5sf2qIxQqwWUDwTZnJj

...snip...

m5ugggI9MIICOTCCAaagAwIBAgIQyLeyGZcGA4ZOGqK7VF45GDAJBgUrDgMCHQUA

Dxoj+2keS9sRR6XPl/ASs68LeF8o9cM=

SIG # End signature block

 Execute the script once again:

PS C:\> .\foo.ps1

Do you want to run software from this untrusted publisher?
The file C:\foo.ps1 is published by CN=PowerShell User. This publisher is

not trusted on your system. Only run scripts from trusted publishers.
[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help

(default is "D"):

Answer "A" and the script proceeds to run, and runs without prompting thereafter. A new certificate is

also created in the Trusted Publishers container:

Figure 13 - A new certificate in Trusted Publishers

If the certificate is missing the script will fail.

Running Signed Scripts Elsewhere

PowerShell will be unable to validate a signed script on computers other than the one where it was

signed. Attempting to do so gives an error:

PS C:\ > .\foo.ps1

The file C:\foo.ps1 cannot be loaded. The signature of the certificate can

not be verified.

At line:1 char:9

+ .\foo.ps1 <<<<

Signed scripts can be transported by exporting (from original computer) and importing (to the new

computer) the Powershell certificates found in the Trusted Root Certification Authorities container.

Optionally, the Trusted Publishers can also be moved to prevent the first-time prompt.

Letting the Customer Manage Configuration

The entire solution needs to be a breeze to manage and administer by non-IT-savvy individuals, so

along with the PowerShell interface, there is a Web-based interface for changing settings and

publishing them from development to staging, then to production.

Figure 14 - UI for managing settings between Staging and Production

Most importantly, because we use Subversion as our versioned file system, every change is audited

and tagged with Subversion so that the state of the system – every app and every setting – can not

only be checked against the version under source control, but changes can be rolled back or settings

can be reapplied.

All the PowerShell scripts and cmdlets can be called from within ASP.NET with code like this, using the

Runspace model as seen in the NUnit example before. Note that we can add our custom cmdlets by

calling AddPSSnapIn and passing the RunspaceConfiguration instance to the RunspaceFactory.

private Collection<PSObject> ExecuteCmdLet(Command cmdLet)

{

 PSSnapInException warning;

 Collection<PSObject> result;

 RunspaceConfiguration rsConfig = RunspaceConfiguration.Create();

 rsConfig.AddPSSnapIn("EvergreenAdministration", out warning);

 using (Runspace rs = RunspaceFactory.CreateRunspace(rsConfig))

 {

 rs.Open();

 using (Pipeline p = rs.CreatePipeline())

 {

 p.Commands.Add(cmdLet);

 result = p.Invoke();

 }

 rs.Close();

 }

 return result;

}

When calling a PowerShell command from a “host” application like ASP.NET you should avoid

concatenating strings to prevent “SQL-injection style attacks.” We don’t want to allow arbitrary script

to be called within our hosted PowerShell Runspace, so one should treat commands in PowerShell

similarly to stored procedures in SQL.

Figure 15 - UI showing Rollback and Promote to Production

Here is an example script from an ASP.NET page that rolls back settings as seen in the UI in Figure 15.

protected void btnRollback_Click(object sender, EventArgs e)

{

 Command cmd;

 Collection<PSObject> result;

 cmd = new Command("Get-DeployHistory");

 cmd.Parameters.Add("FIName", Profile.FI);

 cmd.Parameters.Add("Environment",

Corillian.Evergreen.Environment.Production.Name);

 result = ExecuteCmdLet(cmd);

 if (result.Count <= 1)

 return;

 cmd = new Command("Restore-Settings");

 cmd.Parameters.Add("FIName", Profile.FI);

 cmd.Parameters.Add("EnvironmentName",

Corillian.Evergreen.Environment.Production.Name);

 cmd.Parameters.Add("TaskName", (result[1].BaseObject as Task).Name);

 cmd.Parameters.Add("CommittedBy", Profile.UserName);

 result = ExecuteCmdLet(cmd);

 BindPage();

 }

 private Collection<PSObject> ExecuteCmdLet(Command cmdLet, Runspace rs)

 {

 Collection<PSObject> result;

 using (Pipeline p = rs.CreatePipeline())

 {

 p.Commands.Add(cmdLet);

 result = p.Invoke();

 }

 return result;

 }

The same basic technique applies to hosting PowerShell functionality in MMC or within a WinForms

application.

Conclusion

This “hands off” approach to system deployment and on-going maintenance continues to save our

Systems Engineers time and effort. PowerShell is an incredibly powerful tool for automation and its

basic building blocks are exposed for the developer to exploit. If PowerShell were just a console, it’d be

interesting, but not fundamentally compelling. The truly interesting things happen when PowerShell is

used like MacGyver, the popular show with the character of the same name of the 80s, used his mind.

MacGyver would find himself in a foreign prison with a paperclip, rubber band and pen, and would

unfailingly break out of prison with some contraption build with these simple building blocks. In our

solution Windows Powershell, a very open platform, along with Open Source software Subversion has

enabled us to automate not just the mundane aspects of software deployment and configuration, but

also enable our clients to manage their applications in a secure and auditable environment. We believe

this solution showcases PowerShell not just as an interesting technical solution, but a compelling

business solution.

About Corillian

Corillian is a premier provider of enterprise software and services for the financial services industry.

Empowered with Corillian solutions, some of the world's most visionary financial institutions provide

their customers with the tools to manage their finances more effectively.

Built on the Microsoft Windows Server System, the Windows .NET framework, and utilizing XML Web

Services, Corillian's solutions are unmatched in reliability and performance, and successfully scale at

some of the world's largest financial institutions. Corillian's proven solutions enable financial

institutions to deliver innovative services enterprise-wide, across multiple delivery channels and

multiple lines of business. The Corillian Voyager platform provides secure and scalable account access

and transaction processing for a wide variety of applications built by Corillian's expert software

developers, by Corillian-certified partners, and by the in-house development organizations of some of

the world's best financial institutions. For more information about Corillian Corporation, visit the

company's Web site at http://www.corillian.com. NASDAQ: CORI

About Scott Hanselman

Scott Hanselman is Chief Architect at the Corillian Corporation, an eFinance enabler. He has thirteen

years of experience developing software, in last 6 years with VB.NET and C#. Scott is proud to have

been appointed the Microsoft Regional Director for Portland, OR for the last six, years, developing

content for, and speaking at Developer Days and the Visual Studio.NET Launches in both Portland and

Seattle. Scott was in the top 5% of audience-rated speakers at TechEd 2003, 2005, and 2006 in the US

and Europe. He's spoken in Africa, Europe and Asia on Microsoft technologies, and co-authored

Professional ASP.NET 2.0 with Bill Evjen and Devin Rader. Scott has also spoken at VSLive, and was

made a Microsoft MVP for ASP.NET in 2004 and a Solutions Architecture MVP in 2005. His thoughts on

the Zen of .NET, Programming and Web Services are at http://www.computerzen.com.

http://www.corillian.com/
http://www.computerzen.com/

