
Testing After Unit Tests

Quetzal Bradley

Connected Systems Architecture

Why do we test?

Why do we test?

• To try and predict whether our customers will
be satisfied

– Ship a finite number of features

– Infinite possible tests for that finite feature list

– Theory: Choose least number (cost) of tests that
maximizes correlation between “tests pass 100%”
and “customers satisfied”

Is 100% Code Coverage Enough?

• What we know:
– It is possible to call the code and have a correct

result

• What we don’t know:
– Everything else! We know very little about the

quality of the code.

• Code coverage is a negative metric.
– Lack of coverage is good information on untested

code

Testing the State Highways try #1

• Writing unit tests for code coverage

– Take one 3-cylinder hatchback and run down
every road at least once

Woops!

A code example

static int StringLength(string input)

{

return input.Length;

}

static void Main(string[] args)

{

// tests, 100% coverage!

Assert.AreEqual(4, "four");

}

Woops!

static void Main(string[] args)

{

// call “perfectly” tested function:

int length = StringLength(null);

}

Testing the state highways try #2

• Prioritize the roads

– Try to hit every road, but focus multiple attention
on the highways and primary arteries

• Diversify the data

– Send every kind of vehicle and configuration down
the most important roads

• Feedback and iterate

– Are we finding issues?

What is a viable strategy?

• Use unit tests with high coverage for breadth

• Target high value states by using at least the
following techniques:
– Sample tests

– Data oriented primary functionality tests

– Stress

– Integration tests

– Manual testing

• Feedback and iterate

Sample Tests

• Samples are simulations of the code our
customers will write

– Highly correlated with customer pain

• Writing the samples is great

• Running them is better

Data oriented primary functionality
tests (depth)

• Running the same code, but different data

• Randomness, unpredictability, or huge data
sets are helpful

• Oracles are hard

– The oracle is the code that knows whether a result
is the correct result or an incorrect result

Stress (breadth)

• Increase state coverage by perturbing ambient
state

• Great for multithreaded but good for single-
threaded code as well

– Running different paths that interact at some
point

Integration Tests

• We would like to be sure that every end-to-
end customer use succeeds

• The connection between larger pieces

• Hard to write and hard to maintain

– Large number of steps to desired state

– When code is changing they are always broken

Manual Testing

• A small number of manual tests checked by a
human infrequently can have a huge ROI
– Difficult to measure

• Subtle performance issues (slight lags)

• Visual effects (flicker)

– Frequently changing

– Unpredictable

• Checklists can be boring
– Mitigation: directed ad-hoc

– Mitigation: vendors

Effort expectations

Development

Unit TestSamples

Functionality

Stress

Integration

Manual

How much testing is enough?

• Ship a finite number of features

• Infinite possible tests for that finite feature list

• Theory: Choose least number (cost) of tests
that maximizes correlation between “tests
pass 100%” and “customers satisfied”

• Practice: Cover low hanging fruit, watch
signs, intuition, iterate

Questions?

